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Abstract— A picaoclectric transducer (PZT) is capable of
providing linear motion if controlicd correctly and could
provide a replacemant for traditional heavy and large servo
systems using motors. This paper focuses on a geanetic
model reference adaptive control technique (GMRAC) for a
PZT which is moving a mirror where the goal is to keep the
mirror velocity constant. Genetic Algorithms (GAs) arc an
intagral part of the GMRAC technique acting as the search
engine for an optimal PID controller.

Two methods are suggested to control the actuator in this
research. The first one is to change tha PID paramaters
and the othar s to add an additional reference input in the

. system. The simulation resuits of these two methods are

compared.

Simulated Annealing (SA) is also used to sclve the prob-
lam. Simulation results of GAs and SA are compared al-
ter simulation. GAs show the besat result according to the
simulation results. The cntire model is designed using the
Mathworks' Simulink tool.

Keywords— GAs, GMRAC, PID, PZT, Simulink

I. INTRODUCTION

Most Linear actuators are comprised of motors which are
very heavy, but are capable of providing stable linear mo-
tion over long periods of time. Although the PZT actuator
can provide a highlv controllable linear motion, the inher-
ent characteristics of the material can change due to aging
and temperature. Therefore, an adaptive control technique
is desirable to compensate for these changes. The GMRAC
technique which incorporates genetic algorithms was used
to set the PID parameters and thus control the velocity
movement of a mirror being driven by the PZT.

Genetic Algorithms (GAs) have been useful in solving
various kinds of problems. GAs are primarily used to solve
optimization problems which have a complex, nonlinear
search space. The design automation for controllers is one
application for GAs. Therc arc scveral Instances where
GAs have boen applied to this type of problem: Lee and
Talagi designed a fuzzy system using GAs for the inverted
pendulum [5]; Michalewicz used GAs for solving the opti-
mal control problem [7]; and Das, Goldberg, Maclay and
Dorey used GAs for system identification [1, 6).

In this research, two different optimization approaches
are proposed. The first is to change the PID gain param-
eters and the other is to adjust an additional input value.
The performance of the two different methods are com-
pared and simulated annealing (SA) is also used to compare
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Figure 1. PZT Systcm

the performance with GAs. According to the simulation
results, the GA outperformed the other methods. Specif- ©
ically, the first approach using GAs for PID gain control :
had the best result.

II. PZT SYSTEM

The PZT system described here consists of stacks of
piezoelectric structures which were invented at NASA's
Langley Research Center. When an input voltage is applied
to the PZT, a force is exerted by the piezoelectric which
delivers a displacement to the attached mirror. These de-
vices can be placed mechanically in serics and connected
electrically in parallel. The motion of cach element adds in
phase to produce the total motion which is almost equiv-
alent to the sum of motion of each element. The system
configuration is shown in Figure 1 [10]. The real photo
image for this system is in Figure 2.

In this simulation, the PZT plant system was modeled
in Simulink. The entire system model is shown in Figurc 3.

III. GAs aND GMRAC

According to evolution theory, nature will adapt to a
changing environment in an efficient manner. The infor-
mation about cach individual is contained in its genes, and
the processes of natural selection and progressive breed-
ing build a strong population (2, 3]. Natural selection en-
sures that the genes from a strong individual are present
in greater numbers in the next generation than those from
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Figure 3. PZT Controller

a weak individual. After a number of generations, this
process can combine stronger gence to produce an even
stronger individual whose genes will strengthen the popu-
lation. The Genetic Alyorithms (GAs) are based on this
natural selection and genetics. They combine survival of
the fittest among string structures with an information ex-
change to form search algorithms with some of the innova-
tive flair of human search. In every generation, a new set
of strings is created from pieces of the old. GAs efficiently
exploit historical information to determine a ncw search
point with improved performance [4).

Complex structures can be coded by using simple rep-
resentations such as bit strings (4]. Thesc act like natural
genes. A number of these strings or individuals form the
population of GAs. In the next step, successive genera-
tions of individuals will be built by using genetic operators.
These genetic operators are used to make new individuals
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Figure 4. Basic Procedure of GAs

by combining the genes of other individuals. When this
process is controlled properly, it can producc a rapid im-
provement in the overall fitness of the population. This
produces a population of structures that is well-adapted to
the problem. After number of generations, the structures
represent good solutions: The fittest individual should be
an optimal solution. GAs can perform the optimization
process even in large and complicated search spaces. The
basic procedure of GAs is shown in Figurc 4 The most
popular method of representing the problem is a binary bit
string. In this string, we can use elther ‘0’ or ‘1’ as a bit
value. GAs using this method are known as Binary-Coded
Genetic Algorithms (BCGA) (8).

Chooying the fitness evaluation for GAs Is a very impor-
tant factor. The fitness function must be devised for each
problem to be solved. Given a particular string, the fitness
function returns a single numerical “fitness”. For many
problems, particularly function optimization, it is obvious
what the fitness function should measure. But this is not
always the case. It is necessary to calculate the fitness of all
individuals in an entire population. Therefore, it is better
to usc as simple a function as possible.

The GMRAC uses GAs with the plant model [9]. Re-
ceiving plant output and referencc input information, GAs
sclect the best PID gains at each time step from the candi-
date populations. It is very important for the adaptation
to occur between one time step and the next. After a set
number of time steps, 2 new output is generated using the
best set of PID gains from the simulate time steps. There-
fore, the process may not converge beforc the output must
be set, but a near optimum value is selected for best per-
formance. '

The block diagram for the GMRAC is shown in Figure 5.
GMRAC needs two types of plants, the real system and
the plant model are needed for the implementation. In
the simulation stage, the PZT simulink model represents
both systems. A disturbance is used to simulate the real
environment and adds noise to the system.
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Max Finess Filness Calculadon is shown in Figure 7. In this model, the GMRAC finds the
best set of PID gains at each time step. In this simula.
tion, the population size was set to 20. Each gain value is
mapped into one string, and there are four parameter vari-

. ables to be optimized: proportional, integral, derivative

M Mk and derivative divisor parameters. Each of these gain ele-

y&t)  |(Reference) ments is assigned a 6 bit value. The method of calculating
the fitness is explaincd in section V. The crossover oper-

Figure 6. GMRAC Operation Module for PZT Control

IV. GA IMPLEMENTATION

The GMRAC operation module for the PZT system is
shown in Figurc 6. In the simulation, two types of opti-
mization methods are used. The first one is to find the
optimal set of PID gains. The other is to find an addi-
tional rcference input to the error signal. The first method

invalves finding four gain factors but the second method

just necds one value. Therefore, the size of the chromo-
somgc string is smaller in the second case. The simulation
is performed for both methods. The model of the first case

ation and mutation are used as genetic operators, linear
scaling is used for proventing early convergence, and elite
passing s used to keep the best string during thc entire
process.

The detailed block diagram of the GMRAC module for
the PID gain optimization is shown in Figure 8. In this
module, the fitness function gives the best fitness values
to the set of PID gains which have the smallest difference
between the reference input and the system output.

The second casc is shown in Figure 9. In this case, the
additional reference input is added to the reference input
part in the original system. The size of string is normally
smaller than when using PID gain control and thus reaches
the optimal value much faster. The GMRAC module for
this case !s shown in Figure 10.
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Figure 11. Simulation Environment

V. SiMULATION RESULT

The environment for simulation is shown in Figure 11.
In Figure 11, there is & subblock for the GMRAC routine.
Two output graphs are shown bottom right side. The sim-
ulation time and mcthod can be decided by the simulation

7| Gesetic Alporithm Mode! u—l _{)_ menu from the menu bar in the simulator.
+
N

Four types of fitness functions were used to get the best
result. The definition of each of the fitness functions are ay
follows:

o e(k) @ yn,(k+1) - §(k+1), eg(k) = e(k) —e(k - 1)

'm-ea(k),mte(k)
— D » HANT s type 1: p2
Vebooly ! » type 2: 50?1+500P2
o type 3: 500p;

o type 4: 500p; + 50p;

o Fitness : g—;a.‘—w-"—

Figure 9. System for Additional Input The objective is to reduce the error. Therefore, the op-
timization value must have the smallest error. The mini-
mization problem is easily converted to the maximization
problem. This minimization problem is changed to the
maximization problem by using the fitness value as 1.

_'(k)___’ The definition of each case is summarized in Table 1. Cases
| ModelPD —>|  Fitess 1 to 8 use the PID gain coutrol. Case numbers which are

yk) greater than 20 use the additional reference input control.
Three input sets are used to compare the performance be-

tween these two methods. The input value starts at “0”
und reaches “1” at 1 msec in the first case. The first 18
simulation results use this step input command. Simula-

Populaton Additional Crossover & Mutation — A&hﬂ. tion results with diffcrent fitness function types are shown
e sty cisaevme  iB Figure 12. As shown in table 1, the noise is not added
seting in these cases. The next shmulations are for additional ref-

erence input control. The same types of fitness functions
are used in this method, and the results are shown in Fig-
ure 13. The simulation results are almost the same for both

methods. The fitness type does not affect t.he siznulation
Figure 10. GMRAC Module for Additional Input result in these cases.
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Type of Cases | Fitness Type |  Noise
Case 1 fitness 1 No-noise
Case 2 fitness 2 No-noise
Case 3 fitness 3 No-noise

| Case 4 fitness 4 No-noise
Case 5 fitness 1 With-noise
Case 6 fitness 2 With-noise
Case 7 fitness 3 With-noise
Case 8 fitneys 4 With-noise
Case 9 No GAs No-noise
Case 10 No GAs With-nolse

“Case 21 fitness 1 No-noise
Case 22 fitness 2 No-noise
Case 23 fitness 3 No-noise
Casc 24 fitness 4 No-noise
Case 25 fitness 1 With-noise
Case 26 fitness 2 With-noise
Case 27 fitness 3 With-noise
Case 28 fitness 4 With-noise

Table 1. Definition of Each Case

1.6 ; . . e pen s

© ©GA(casel)
o+~ BA (Case2)
oo QA (caseld)

= v QA (cased) |

os — Case »
=== Ref
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Time (sec)

Figure 13. Simulation Result (case 1-4)

The output results of GAs and SA with type 1 fitness
are shown in Figure 14. GAs are not applied to case 9
and noise is not added. The simulated Annealing (SA)
technique was also simulated for comparison using the same
cases. Simulation results where white noise is added to the
system are shown in Figure 15.

The sccond set of simulation uses a different input set.
The input velocity command starts at value “1” and kecps
this value to the end of simulation. In this case, the white
noise is not used. The noise value starts with “0" at 0 sec
and is changed to “0.17 st 0.15 sec, “-0.1” at 0.2 sec, and
finally “0” at 0.35 sec. The algorithin uses the fitness type
1. The simulation result without nolse is shown in Fig-
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Figure 13. Simulation Result (case 21-24)
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Figure 14. Simulation Result (GAs and SA)

ure 16. The results with noise are shown io Figure 17. In
this case, the type of fitness function affects the simulation
results slightly. The fitness function type 1 provides the
best result when compared against the others.

The final simulation usas a step function as an input
signal. The result is shown in Figure 18. In the Figure,
section (A) shows the result for the entire region. Sections
(B),(C), and (D) show detailed results for specified regions
in section (A). In this simulation, GAs and SA are used to
solve the problem and four different results emerge from
the simulation. The legend in the graph is cxplained as
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Figure 18. Simulation Result without Noise

follows.

e GAl - GAs for PID gain control.

o GA2 - GAs for additional input control.
e SA1 - SA for PID gain control.

e SA2 - SA for additional input control.

According to the simulation results, GAs and SA show

better performance than the original PID controller. Specif-

ically, GAs for optimizing PID gain control performs the
best.
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Figure 17. Simulation Result with Noise

V1. CONCLUSIONS

GMRAC techniques have been shown to outperform other
adaptive control methods for the control of a PZT actuator
system. Good control of PZT systems would enable them
to be used in place of heavy, noisy motors in a variety of
applications.

According to the simulation results, GAs and SA show
better performance than a normal PID controller. Fur-
thermore, GAs for PID gain control show the best result
yielding a fast and stable response. GAs and a plant model
were combined to form the GMRAC model, and it demon-
strates good performance in dynamically controlling the
system with or without noise.
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